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Reweighting in nonequilibrium simulations

Ronald Dickman*
Departamento de Fı´sica, Universidade Federal de Santa Catarina, Campus Universita´rio Trindade,

CEP 88040-900, Floriano´polis, SC, Brazil
~Received 22 February 1999!

A simple reweighting scheme is proposed for Monte Carlo simulations of interacting particle systems,
permitting one to study various parameter values in a single study, and improving efficiency by an order of
magnitude. Unlike earlier reweighting schemes, the present approach does not require knowledge of the
stationary probability distribution, and so is applicable out of equilibrium. The method is applied to the contact
process in two and three dimensions, yielding the critical parameter and spreading exponents to unprecedented
precision.@S1063-651X~99!50607-7#

PACS number~s!: 05.10.2a, 05.70.Ln, 02.70.Lq, 05.50.1q
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Reweighting and histogram methods, which permit one
calculate thermal averages at different temperatures fro
single sample, have greatly improved the efficiency of Mo
Carlo simulations@1#. Given a sample of configurations
C1 , . . . ,CN , generated at temperatureT, one can in prin-
ciple generate a sample appropriate to some temperaturT8,
by assigning the weightwi5Pi(T8)/Pi(T) to configuration
i. Until now, such methods have been restricted to equi
rium, where the stationary probability distribution isPi
}e2Ei /kT. Away from equilibrium, one does not in gener
know the stationary distribution, so there is no simple way
evaluate thewi . Recently Grassberger and Zhang show
how a ‘‘self-organized’’ formulation of directed percolatio
can be used to study several parameter values in a single
without reweighting@2#. In this work I introduce a reweight
ing scheme for interacting particle systems, based on
observation that, despite our ignorance of thestationarydis-
tribution on configuration space, we can write down t
probability for any sequence of events between time zero
time t.

I apply the reweighting method to the contact proce
~CP!, a simple particle system~lattice Markov process! ex-
hibiting a phase transition to an absorbing~frozen! state at a
critical value of the creation rate@3#. This model belongs to
the universality class of directed percolation@4# and
Reggeon field theory@5# ~it is one of the most well-studied
representatives of this class@6#!, and is pertinent to model
of epidemics@7#, catalysis@8#, and damage spreading@9#. In
the CP each site of the hypercubic latticeZ d is either vacant
or occupied by a particle. Particles are created at vacant
at rateln/2d, wheren is the number of occupied neare
neighbors, and are annihilated at unit rate, independent o
surrounding configuration. The order parameter is the p
ticle densityr; the vacuum state,r50 is absorbing. Asl is
increased beyondlc , there is a continuous phase transiti
from the vacuum to an active state; forl.lc , r;(l
2lc)

b in the stationary state.
There are a number of ways~equivalent as regards scalin
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behavior! of implementing the CP in a simulation algorithm
in this work I follow the widely used practice of maintainin
a list of all occupied sites. Trials begin at time zero, from
fixed initial configuration. Subsequent events involve sele
ing ~at random! an occupied sitex from theNp sites on the
list, selecting a process: creation with probabilityp5l/(1
1l), annihilation with probability 12p, and, in the case o
creation, selecting one of the 2d nearest neighbors,y, of x.
~The creation attempt succeeds ify is vacant.! The time in-
crementDt associated with an event is 1/Np , whereNp is
the number of occupied sites immediately prior to the eve
A trial ends when all the particles have vanished, or at
first event with time>tm , a predetermined maximum time

Consider a single trial, extending from time zero up totm ;
for simplicity, suppose that initially there is but a single pa
ticle, located at the origin.~If all of the particles disappear a
some timet8, the trial is trapped in the vacuum state for a
later times.! A trial consists of sequenceS of events, each
involving the annihilation or~attempted! creation of a par-
ticle. With the help of diagrams reminiscent of the ‘‘perc
lation substructure’’ invoked in defining the CP@10,11#, we
can write down the probability of sequenceS; examples are
shown in Fig. 1. Each annihilation event carries a factor
(12p)/Np , each creation event~successful or not! a factor
p/(2dNp). The probabilityPp(S) of a sequenceS, extending
to time t, is simply the product of all factors associated wi
events occurring at timest8<t. Now, for finite t, the setSt of

rt

FIG. 1. Examples of event sequences in the one-dimensi
contact process starting from a single particle. Vertical lines rep
sent particles, whose birth is marked by a dot, and annihilation
3. Solid and dashed horizontal lines represent, respectively,
cessful and unsuccessful creation events. Probabilites are liste
neath each sequence.
R2441 © 1999 The American Physical Society
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possible sequences is finite, and ifA(S;t) is any property of
the system~e.g., the number of particles at timet), then its
expectation is

^At&p5 (
SPSt

Pp~S!A~S;t !. ~1!

In a Monte Carlo simulation we generate a sam
S1 , . . . ,SN , drawn from the distributionPp(S), which
yields the estimateĀt;p[N21(k51

N A(Sk ;t). From our analy-
sis ofPp(S), it is evident that itsp-dependence only involve
the numbersc(S) and a(S) of creation and annihilation
events, respectively; the ratio of the probabilities associa
with two different values ofp is

v~S![
Pp8~S!

Pp~S!
5S p8

p D c(S)S 12p8

12p D a(S)

. ~2!

Thus the reweighted estimate, Āt;p8
[N21(k51

N v(Sk)A(Sk ;t), has expectation

(
SPSt

Pp~S!v~S!A~S;t !5^At&p8 , ~3!

and is an unbiased estimator ofA in the process with creation
probability p8.

As in other applications of reweighting, it is not enough
have an unbiased estimator; one must also ensure tha
sample generated with creation probabilityp has a reason
able degree of overlap with a typical sample atp8. We ex-
pect that as the durationtm increases, the range ofl values
for which a sample is useful will narrow. To estimate th
range of values, consider a sequence ofr events. The prob-
ability that exactlyc of these are creation attempts is giv
by the binomial distribution,

P~c;r !5
r !

c! ~r 2c!!

lc

~11l!r
, ~4!

so that ^c&5rp and the standard deviations is given by
s25rl/(11l)2. In a typical sequence generated with cr
ation probability p, the actual number of creation events w
be in the rangerp6s, corresponding to a creation rate
l8.l@16(11l)(lr )21/2#. Thus the typical fluctuation in
l is dl5(11l)Al/r . In the two-dimensional CP, for ex
ample, one finds thatr;0.7 t1.68 for l'lc.1.6488. This
corresponds todl50.013 fortm51000. Although the range
may appear narrow, it is more than sufficient for ‘‘tim
dependent’’ simulations, which typically focus on a sm
interval nearlc .

I have applied reweighting to the CP in two and thr
dimensions, in studies using two kinds of initial states. In
case described above, one studies the survival and spre
activity from a single ‘‘seed’’ particle.~The system size mus
be sufficient to guarantee that particles never reach
boundaries.! The principal quantities of interest are the su
vival probability P(t), the mean number of particlesn(t),
and the mean-square distanceR2 of particles from the origin.
At the critical point these are known to follow asymptot
power laws@12#, P(t);t2d, n(t);th, andR2(t);tz. Away
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from lc these quantities show deviations from power law
Since the CP exhibits corrections to scaling of the fo
P(t);t2d@11at2a1•••# ~similarly for n and R2), it is
useful to plot derivatives~local slopes of the log-log plots!
versust21 when extracting the critical exponentsd, h andz
@12#. These exponents are connected by the hyperscaling
lation: 4d12h5dz.

The second kind of study begins with all sites occupie
and follows the decay of the particle densityr(t). In this
case the signature of the critical point is power-law dec
r;t2u in the short-time regime, i.e., before the correlati
length has attained the system sizeL. A scaling argument
implies u5d @13,14#.

As a preliminary test, I compared two results for the s
vival probability P(t) in the two-dimensional CP atl
51.665, one obtained by reweighting a sample ofN5105

trials generated atl51.650, the other from a similar run bu
without reweighting (l51.665). The relative difference be
tween the two results forP(t) remains<0.017 for t<tm
5400. Since each result has a relative uncertainty
A@12P(t)#/NP(t).0.01 for t5tm , @P(tm).0.085#, the
difference between the two results is fully consistent w
sample-to-sample fluctuations.

In two dimensions I performed spreading simulations e
tending totm52980, on lattices of up to 120031200 sites.
Samples generated at a central value,l0, were reweighted so
as to study ten additional values,l5l06mDl, with m
51, . . . ,5. Thegeneral strategy is to use relatively sma
samples and run times initially, to bracketlc , and then ex-
tend the sample size and run time to make finer distinctio
Thus a sample of 106 trials with tm5665 andDl51024 is
already sufficient to restrictlc to the interval @1.648 75,

FIG. 2. Local slope plot for exponenth in the two-dimensional
CP. The middle curve~with data points! marks l051.648 80.
Curves above and below are forl values at intervals ofDl54
31025 above and belowl0.

TABLE I. Critical exponents for DP in two dimensions.

Exponent Ref.@2# Ref. @15# Present work

d 0.451~3! 0.4505~10! 0.4523~10!

h 0.229~3! 0.2295~10! 0.2293~4!

z 1.133~2! 1.1325~10! 1.1316~4!

4d12h22z 20.004(22) 20.004(8) 0.005~6!
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1.648 95#. The most sensitive indicator of criticality is th
local-slope plot ofh t , defined as the derivative of lnn with
respect to lnt. @Numerically h t is estimated from a least
squares linear fit to the lnn data for a set ofni517–25
equally spaced values~an increment of 0.1! of ln t; it is plot-
ted versusta

21 , ta being the geometric mean of thet-values
over theni intervals.d t andzt are obtained similarly.#

To refine the estimate forlc I generated two samples o
2.53107 trials each, withtm52980,l051.648 80, andDl
5431025. The critical point was determined from the pl

FIG. 3. ~a! Local slope plot for exponentd in the three-
dimensional CP. Inset: detail ofd24.96t21. The middle curve
~with data points! marksl051.316 89; curves above and below a
for l values at intervals ofDl5231025. ~b! Local slope plot for
exponenth in the three dimensional CP. Symbols are as in~a!. ~c!
Local slope plot for exponentz in the three-dimensional CP. Th
inset shows the same data plotted versust21/4.
of h t , which shows a clear deviation from smooth behav
for off-critical values.~Figure 2 shows theh t plot for one of
the two runs. Note that the leading correction to scaling d
not follow a simple 1/t decay, as was also noted for DP
211 dimensions@2#.! These studies yieldlc51.648 77(3),
the number in parentheses denoting the uncertainty in the
figure. Extrapolating the local-slope plots, I obtaind
50.4523(10),h50.2293(4), andz51.1316(4), which are
in good agreement with, and generally sharper than, the
sults of previous large-scale simulations of directed perco
tion @2#, and of the ZGB surface catalysis model@15# ~see
Table I!.

Grassberger and Zhang@2# noted that the derivatives o
ln n(t) and lnP(t) with respect tol ~evaluated atlc), grow
;t1/n uu. Analyzing n(t) in this fashion yieldsn uu51.292(4),
in good agreement with their estimate of 1.295~6!.

In three dimensions, I performed four runs of 107 trials
each, extending totm52208. ~To avoid finite-size effects, I
do not use an occupancy array in the three dimensional si
lations, but simply search the particle list to detect overlap!
Two studies usedl051.316 86,Dl5331025; in the oth-
ers, l051.316 89 andDl5231025. Figure 3 shows the
local slopes for one of the latter runs. While the extrapolat
of h is straightforward, the strong linear correction tod (d t
.d24.96t211•••), renders it advantageous to subtract t
linear term when estimating the exponent@inset of Fig. 3~b!#.
In the case ofz, the curves for alll values are virtually
identical. It is difficult to extrapolate the 1/t plot; the present
estimate is derived by extrapolating the local slope plot
versust21/4, as in Fig. 3~c!. Averaging over the results fo
the four runs yields the following estimates for the thre
dimensional CP:

lc51.316 86~1!, h50.110~1!,

d50.7263~11!, z51.042~2!

~the uncertainties represent one standard deviation!. These
are in good accord with hyperscaling: 4d12h23z
520.001(12). The present results are compatible with Je
en’s estimates oflc51.3168(1), h50.114(4), and d

FIG. 4. Local slope plot for exponentd in the two-dimensional
CP starting with all sites occupied,L5128. The data points mark
l051.6490,Dl5531025. Inset: decay of the densityr.
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50.730(4), but notwith his valuez51.052(3)@16#. Analy-
sis of d ln n(t)/dl yields n uu51.114(4), just consistent with
Jensen’s result, 1.105~5!.

I studied the initial decay of the density~starting with all
sites occupied!, in the two-dimensional CP for system siz
L532, 64, and 128. Figure 4 shows the results of one
three sets withL5128, 105 trials, l051.6490, andDl
51024. ~The studies forL532 and 64 used similar param
eters, in runs of 53105 and 23105 trials, respectively.! For
the relatively short runs employed here (tm<1096), all trials
survive up totm . While ther(t) curves~inset! for different
l values are indistinguishable, the local slopes~main graph!
vary quite systematically withl. Since the power lawr
;t2d obtains for finite times nott→`, I plot the local slope
versus lnt in this case. One can distinguish three regimes:
initial phase in whichd t increases for alll values, a late
stage in which it decreases, asr(t) approaches a valu
;L2b/n' as predicted by finite size scaling, and an interm
diate regime in whichd t is more or less constant. Associa
ing lc with the d t most nearly constant in the intermedia
regime yieldslc51.6492(1) for L532, 1.6491~1! for L
564, and 1.648 98(5) forL5128. The corresponding est
s
e,
s

f

n

-

mates for d ~from the flat portion of each curve! are
0.4508~10! for L532 and 0.4520~5! for L564 and 128.
Thus thelc estimates appear to be approaching the va
derived from spreading simulations; the two kinds of stud
yield consistent results ford.

In summary, I propose a simple reweighting scheme
nonequilibrium lattice models, and apply it to the conta
process in two and three dimensions. Since spreading s
lations are usually repeated for five or so differentl values,
reweighting yields roughly an order-of-magnitude speed
In addition to improving efficiency, using the same sample
study all parameter values eliminates the effects of indep
dent fluctuations, which complicate determination oflc and
the critical exponents. These computational advantages h
permitted determination of the critical parameters of t
three-dimensional CP to unprecedented precision. One
expect reweighting to find wide application in simulations
nonequilibrium critical phenomena, including models wi
multiparticle processes.

I thank Adriana Gomes Dickman for suggesting the init
density decay study, and Miguel Angel Mun˜oz and Robert
Ziff for helpful comments.
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