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Reweighting in nonequilibrium simulations
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A simple reweighting scheme is proposed for Monte Carlo simulations of interacting particle systems,
permitting one to study various parameter values in a single study, and improving efficiency by an order of
magnitude. Unlike earlier reweighting schemes, the present approach does not require knowledge of the
stationary probability distribution, and so is applicable out of equilibrium. The method is applied to the contact
process in two and three dimensions, yielding the critical parameter and spreading exponents to unprecedented
precision.[S1063-651X99)50607-7

PACS numbds): 05.10—~a, 05.70.Ln, 02.70.Lq, 05.50q

Reweighting and histogram methods, which permit one tdehavioj of implementing the CP in a simulation algorithm;
calculate thermal averages at different temperatures from ia this work | follow the widely used practice of maintaining
single sample, have greatly improved the efficiency of Montea list of all occupied sites. Trials begin at time zero, from a
Carlo simulations[1]. Given a sample of configurations, fixed initial configuration. Subsequent events involve select-
Ci, ... Cn, generated at temperatule one can in prin-  ing (at randon an occupied sitex from the N, sites on the
ciple generate a sample appropriate to some temperature |ist, selecting a process: creation with probability= A /(1
by assigning the weighty;=P;(T")/P;(T) to configuration ) annihilation with probability +p, and, in the case of
i. Until now, such methods have been restricted to eq””ib'creation, selecting one of thed2nearest neighbors, of x.
rium, where the stationary probability distribution B, (The creation attempt succeedsyifs vacant. The time in-

—E; kT i i
xe = Aw_ay from_eqylhpnum, one do_es not in general crementAt associated with an event isNY, whereN,, is
know the stationary distribution, so there is no simple way to

he number of occupied sites immediately prior to the event.
evaluat‘tla thew; . R_ecerltly Grass_berger _and Zhang ShO.WEGIA trial ends when all the particles have vanished, or at the
how a “self-organized” formulation of directed percolation

can be used to study several parameter values in a single rufllmr,St evept with 'tlme t.m’ a preds—:-termmec? maximum time.
Consider a single trial, extending from time zero upo

without reweighting 2]. In this work | introduce a reweight- S - . :
ing scheme for interacting particle systems, based on thff" Simplicity, suppose that initially there is but a single par-
observation that, despite our ignorance of stetionarydis- ticle, Iopated at the. orl_glr(Jf all of -the particles disappear at
tribution on configuration space, we can write down theSOme timet’, the trial is trapped in the vacuum state for all
probability for any sequence of events between time zero anter times). A trial consists of sequencs of events, each
time t. involving the annihilation onattempted creation of a par-

| apply the reweighting method to the contact procesdicle. With the help of diagrams reminiscent of the “perco-
(CP), a simple particle systertiattice Markov procegsex- lation substructure” invoked in defining the GR0,11], we
hibiting a phase transition to an absorbiffigppzen state at a can write down the probability of sequen8gexamples are
critical value of the creation raf&]. This model belongs to shown in Fig. 1. Each annihilation event carries a factor of
the universality class of directed percolatidd] and (1-p)/N,, each creation everfsuccessful or nota factor
Reggeon field theor{5] (it is one of the most well-studied p/(2dN,). The probabilityP,(S) of a sequenc&, extending
representatives of this clag8]), and is pertinent to models to timet, is simply the product of all factors associated with
of epidemicq 7], catalysig8], and damage spreadifig]. In  events occurring at timgg=<t. Now, for finitet, the setS, of
the CP each site of the hypercubic lattid is either vacant
or occupied by a particle. Particles are created at vacant sites
at rateAn/2d, wheren is the number of occupied nearest
neighbors, and are annihilated at unit rate, independent of the
surrounding configuration. The order parameter is the par-
ticle densityp; the vacuum statey=0 is absorbing. A3\ is
increased beyond, there is a continuous phase transition 2
from the vacuum to an active state; far>A., p~(\ fime
—\¢)? in the stationary state. 1-p p(1-p)/4 PA(1p)/16

There are a number of waysquivalent as regards scaling  Fg. 1. Examples of event sequences in the one-dimensional
contact process starting from a single particle. Vertical lines repre-
sent particles, whose birth is marked by a dot, and annihilation by

*On leave from Department of Physics and Astronomy, Herbertx . Solid and dashed horizontal lines represent, respectively, suc-
H. Lehman College, City University of New York, Bronx, NY cessful and unsuccessful creation events. Probabilites are listed be-
10468-1589. Electronic address: dickman@fisica.ufmg.br neath each sequence.
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possible sequences is finite, andAifS;t) is any property of
the system(e.g., the number of particles at timig then its
expectation is

<At>p=S§9 Po(SA(S;t). (1)

In a Monte Carlo simulation we generate a sample

S;, ...y, drawn from the distributionP(S), which
yields the estimaté.,=N"'S}_A(S;t). From our analy-
sis of P(S), it is evident that itp-dependence only involves
the numbersc(S) and a(S) of creation and annihilation

events, respectively; the ratio of the probabilities associated

with two different values op is

P..(S 1\ c(S) 1-p' a(s)
w(5)= Pt ):(p—) (—p) L ©
Po(S) \p 1-p
Thus the reweighted estimate, Ay
=N"13M  0(SYA(S;t), has expectation
2 Po(S(SIASH=(A)y, 3)
€ ot

and is an unbiased estimatorAfn the process with creation
probability p’.

As in other applications of reweighting, it is not enough to
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FIG. 2. Local slope plot for exponent in the two-dimensional
CP. The middle curvewith data points marks Ay=1.648 80.
Curves above and below are farvalues at intervals oA\ =4
X 107% above and below.

from A these quantities show deviations from power laws.
Since the CP exhibits corrections to scaling of the form
P(t)~t 9 1+at *+---] (similarly for n and R?), it is
useful to plot derivativeglocal slopes of the log-log plots
versust ! when extracting the critical exponengs  andz
[12]. These exponents are connected by the hyperscaling re-
lation: 46+27n=dz

The second kind of study begins with all sites occupied,

have an unbiased estimator; one must also ensure that tlaad follows the decay of the particle densjyt). In this

sample generated with creation probabiliyhas a reason-
able degree of overlap with a typical samplepat We ex-
pect that as the duratidr, increases, the range af values

case the signature of the critical point is power-law decay,
p~t~%in the short-time regime, i.e., before the correlation
length has attained the system sizeA scaling argument

for which a sample is useful will narrow. To estimate this implies =6 [13,14].

range of values, consider a sequence elents. The prob-

As a preliminary test, | compared two results for the sur-

ability that exactlyc of these are creation attempts is givenvival probability P(t) in the two-dimensional CP ak

by the binomial distribution,

r! A
cl(r=co)t (1+\)"’

P(cir)= (4)

so that(c)=rp and the standard deviatiom is given by
a?=r\/(1+)\)? In a typical sequence generated with cre

ation probability p, the actual number of creation events wil

be in the range p* o, corresponding to a creation rate of
N =X[1=(1+\)(Ar)"Y2]. Thus the typical fluctuation in
\ is SA=(1+\)VA/r. In the two-dimensional CP, for ex-
ample, one finds that~0.7 t1%8 for A ~\,~=1.6488. This
corresponds t@\ =0.013 fort,,= 1000. Although the range
may appear narrow, it is more than sufficient for “time-
dependent” simulations, which typically focus on a smal
interval nean .

=1.665, one obtained by reweighting a sampleNsf 10°
trials generated at=1.650, the other from a similar run but
without reweighting L =1.665). The relative difference be-
tween the two results foP(t) remains<0.017 fort<t,,
=400. Since each result has a relative uncertainty of
J[1-P(t)]/NP(t)=0.01 for t=t,,, [P(t,)=0.085, the
_difference between the two results is fully consistent with
|sample—to-sample fluctuations.

In two dimensions | performed spreading simulations ex-
tending tot,,=2980, on lattices of up to 12001200 sites.
Samples generated at a central valug,were reweighted so
as to study ten additional values,=Ay=mAN, with m
=1,...,5. Thegeneral strategy is to use relatively small
samples and run times initially, to bracket, and then ex-
Itend the sample size and run time to make finer distinctions.
Thus a sample of 10trials with t,,=665 andAA=10"* is
already sufficient to restrich. to the interval[1.648 75,

| have applied reweighting to the CP in two and three
dimensions, in studies using two kinds of initial states. In the
case described above, one studies the survival and spread of
activity from a single “seed” particle(The system size must

TABLE I. Critical exponents for DP in two dimensions.

be sufficient to guarantee that particles never reach the Exponent Ref(2] Ref. [15] Present work
boundarieg. The principal quantities of interest are the sur- 8 0.4513) 0.450%10) 0.452310)
vival probability P(t), the mean number of particlegt), 7 0.2293) 0.229510) 0.22934)
and the mean-square distariReof particles from the origin. z 1.1332) 1.132510) 1.13164)

At the critical point these are known to follow asymptotic 45+ 25-2z —0.004(22) —0.004(8) 0.0085)

power laws[12], P(t)~t~°, n(t)~t7, andR?(t) ~tZ. Away
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0420 FIG. 4. Local slope plot for exponemtin the two-dimensional
CP starting with all sites occupied,=128. The data points mark
o115 No=1.6490AN=5X105. Inset: decay of the densipy.
of 7, which shows a clear deviation from smooth behavior
=0.110 | for off-critical values.(Figure 2 shows they, plot for one of
the two runs. Note that the leading correction to scaling does
not follow a simple 1 decay, as was also noted for DP in
0.105 - 2+1 dimensiong2].) These studies yield .= 1.648 713),
the number in parentheses denoting the uncertainty in the last
figure. Extrapolating the local-slope plots, | obtaifi
0100 o =0.4523(10),7=0.22934), andz=1.131§4), which are
in good agreement with, and generally sharper than, the re-
sults of previous large-scale simulations of directed percola-
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FIG. 3. (@) Local slope plot for exponen® in the three-
dimensional CP. Inset: detail o§—4.9& 1. The middle curve
(with data pointg marksi ,=1.316 89; curves above and below are
for \ values at intervals oA =2x10"°. (b) Local slope plot for
exponenty in the three dimensional CP. Symbols are agajn (c)
Local slope plot for exponert in the three-dimensional CP. The
inset shows the same data plotted versug*.

1.64895. The most sensitive indicator of criticality is the
local-slope plot ofy;, defined as the derivative of imwith
respect to I. [Numerically 7, is estimated from a least-
squares linear fit to the Im data for a set ofn,=17-25
equally spaced valugan increment of 0.Jlof Int; it is plot-
ted versqul, t, being the geometric mean of tltevalues
over then; intervals.§; andz; are obtained similarly.

To refine the estimate fox. | generated two samples of
2.5x 10 trials each, witht,,=2980, \,=1.648 80, andA\
=4x10"°. The critical point was determined from the plot

tion [2], and of the ZGB surface catalysis modéb] (see
Table ).

Grassberger and Zharig@] noted that the derivatives of
Inn(t) and InP(t) with respect ton (evaluated ah.), grow
~t'II. Analyzing n(t) in this fashion yieldsy=1.2934),
in good agreement with their estimate of 1.2895

In three dimensions, | performed four runs of’ 1ials
each, extending tt,,=2208.(To avoid finite-size effects, |
do not use an occupancy array in the three dimensional simu-
lations, but simply search the particle list to detect over)aps.
Two studies used ,=1.316 86,AN=3x10"°; in the oth-
ers, \p=1.31689 andAA=2x10"°. Figure 3 shows the
local slopes for one of the latter runs. While the extrapolation
of # is straightforward, the strong linear correctiondd d;
=6—4.98"1+...), renders it advantageous to subtract the
linear term when estimating the expongnset of Fig. 3b)].

In the case ofz, the curves for all\ values are virtually
identical. It is difficult to extrapolate the tiplot; the present
estimate is derived by extrapolating the local slope plotted
versust 4 as in Fig. 8c). Averaging over the results for
the four runs yields the following estimates for the three-
dimensional CP:

N.=1.316861), 7=0.11Q1),

6=0.726311), z=1.0422)

(the uncertainties represent one standard deviatibhese
are in good accord with hyperscaling: 64 27n—3z
—0.001(12). The present results are compatible with Jens-
en's estimates ofA.=1.316&81), 7=0.1144), and §
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=0.73(Q4), but notwith his valuez=1.052(3)[16]. Analy- mates for § (from the flat portion of each curyeare

sis of d Inn(t)/d\ yields v =1.1144), just consistent with 0.450810) for L=32 and 0.452() for L=64 and 128.

Jensen'’s result, 1.105). Thus the\. estimates appear to be approaching the value
| studied the initial decay of the densitgtarting with all ~ derived from spreading simulations; the two kinds of studies

sites occupiey in the two-dimensional CP for system sizes Yield consistent results fos.

L=32, 64, and 128. Figure 4 shows the results of one of In summary, | propose a simple reweighting scheme for

three sets withL=128, 16 trials, \o=1.6490, andAx  honequilibrium lattice models, and apply it to the contact

—10"%. (The studies folL=32 and 64 used similar param- Process in two and three dimensions. Since spreading simu-

eters, in runs of % 10° and 2x 10 trials, respectively.For Iation_s are us_ually repeated for five or so diffv_arﬁntalues,

the relatively short runs employed hetig,&€1096), all trials ~ "€Weighting yields roughly an order-of-magnitude speedup.

survive up tot,,. While thep(t) curves(insey for different N @ddition to improving efficiency, using the same sample to

X values are indistinguishable, the local slogesin graph study all parameter values eliminates the effects of indepen-

vary quite systematically with\. Since the power lawp dhent f_chtlIJations, which r(]:omplicate det_ermilnaéiomgfand h
~t~ obtains for finite times nat—, | plot the local slope the critical exponents. These computational advantages have

versus Irt in this case. One can distinguish three regimes: ar‘?ermitt?d de_termination of the critical parameters of the
initial phase in whichd, increases for al\ values, a late three-dimensional CP to unprecedented precision. One may

stage in which it decreases, agt) approaches a value expect reweighting to find wide application in simulations of
~ LBV as predicted by finité size scaling, and an interme_nonequilibrium critical phenomena, including models with

diate regime in whichs; is more or less constant. Associat- multiparticle processes.

ing \. with the 6, most nearly constant in the intermediate | thank Adriana Gomes Dickman for suggesting the initial
regime yieldsA;=1.6492(1) forL=32, 1.64911) for L density decay study, and Miguel Angel Mam and Robert
=64, and 1.64898(5) foL =128. The corresponding esti- Ziff for helpful comments.
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